
Multi Level

Data Navigation
with

MicroStrategy

www.www.empowerbi.comempowerbi.com

Introduction

� What is multi-level data (MLD)?

� Why is MLD important?

� How is MLD best implemented?

� How do you create a schema to navigate it?

� Fully worked example

� A parting word

� Summary

What is Multi-Level Data?

� The vast majority of queries use summary data

� Microstrategy has implemented Intelligent Cubes

to support this behaviour

� Microstrategy has implemented multi-level

lookup tables for many years

What is Multi-Level Data?

� You can see them in the tutorial database…

� These are example summary level fact tables

� The following diagrams show you simple diagrams

of how these things evolved

Evolution of BI Models

� Pre 1995 no companies mixed 3NF and Dimensional

�Companies did one or the other…not both

� In late 1995 two pioneers ‘tried out’ mixing the two

modeling techniques in one design. It worked well.

� Since 1996 these two pioneers recommended to clients

the most complete solution was a combination of both

� It is also the most expensive approach

�Not everyone would buy into this approach

� Diagram on next page shows ‘Best Practice Since 1996’…

Best Practice Since 1996

integration/
transformation

5-10 years

Highly

Summarised

(in star schemas

or cubes)

Lightly

Summarised

(in star schemas)

Current

Detail in

archival data

store

(3NF time
variant model)

Older detail
(3NF time variant model)

Operational Systems
(System of Record)

Meta Data

Everywhere

1-2 years

Structured

for
Department

3-5 years

Business Users Desktops

Structured for Enterprise

3NF

ODS

New BIDA Proposition

5-10 years

Highly

Summarised

(in star schemas

or cubes)

Virtual Lightly

Summarised

(star schemas)

Current

Detail in

archival data

store

(star schema)

Older detail (star schema)

3-5 years

Views

for

Department 3-5 years

Business Users Desktops

Structured for Enterprise

Do not have to

build data marts

integration/
transformation

Operational Systems
(System of Record)

Meta Data

Everywhere

star
schema

ODS

Why Is MLD Important?

� #1 reason is speed of query

� If you summarise 1000x the query will be 1000x

faster…approximately

� Summarisation is the #1 tool for fast queries

� Everyone does it no matter some deny it

� Particularly necessary for dashboards and

interactive query processing such as drill down

� MSTR has done this for many years

How Is MLD Best Implemented?

� Ralph Kimball of “Star Schema” fame did it best

� These skills were “lost” in the 90s

� It is done by using a single underlying table with

a “Level” column and views places over the top

� Having one table per summary costs a lot of

maintenance time for ETL programmers

� 100% replicates Microstrategy recommendations

� So lets look at an example

� Our friend the day table…

The Multi Level Day Table
CREATE TABLE [dbo].[TD0005](
[pk_TD0005] [int] NOT NULL DEFAULT ((0)),

[level_col] [varchar](10) NOT NULL DEFAULT ('unknown'),
[dim_char_ky_fld] [varchar](255) NOT NULL DEFAULT ('unknown'),
[day_date] [datetime] NULL,
[day_name] [varchar](9) NULL,
[day_name_sdesc] [varchar](3) NULL,

[day_in_week] [int] NULL,
[day_in_month] [int] NULL,
[day_in_year] [int] NULL,
[week_in_month] [int] NULL,

[week_in_year] [int] NULL,
[month_name] [varchar](15) NULL,
[month_name_sdesc] [varchar](3) NULL,
[month_in_year] [int] NULL,
[calendar_qtr] [int] NULL,

[calendar_qtr_str] [varchar](1) NULL,
[month_in_qtr] [int] NULL,
[week_in_qtr] [int] NULL,
[day_in_qtr] [int] NULL,
[financial_qtr] [int] NULL,

[financial_qtr_str] [varchar](1) NULL,
[financial_year] [int] NULL,
[financial_year_name] [varchar](255) NULL,
[month_in_fncl_qtr] [int] NULL,
[week_in_fncl_qtr] [int] NULL,

[day_in_fncl_qtr] [int] NULL,
[year_name] [varchar](4) NULL,
[year_num] [int] NULL,
[season_name] [varchar](15) NULL,
[season_name_sdesc] [varchar](3) NULL,

[num_days_since_1970] [int] NULL,
[num_weeks_since_1970] [int] NULL,
[num_months_since_1970] [int] NULL,
[hldy_ind] [varchar](1) NULL,

[xmas_hldy_ind] [varchar](1) NULL,
[easter_hldy_ind] [varchar](1) NULL,
[last_day_in_month_flag] [varchar](1) NULL,
[same_weekday_year_ago] [datetime] NULL,
[week_begin_date] [datetime] NULL,

[report_period_01_flag] [varchar](1) NOT NULL DEFAULT ('N'),
[report_period_02_flag] [varchar](1) NOT NULL DEFAULT ('N'),
[report_period_03_flag] [varchar](1) NOT NULL DEFAULT ('N'),
[report_period_04_flag] [varchar](1) NOT NULL DEFAULT ('N'),
[report_period_05_flag] [varchar](1) NOT NULL DEFAULT ('N'),

[week_day_ind] [char](1) NULL DEFAULT ('N'),
[year_month_num] [int] NULL DEFAULT ((0))

[td0005_key_ag1] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag1] DEFAULT ((0)),

[td0005_key_ag2] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag2] DEFAULT ((0)),
[td0005_key_ag3] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag3] DEFAULT ((0)),
[td0005_key_ag4] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag4] DEFAULT ((0)),
[td0005_key_ag5] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag5] DEFAULT ((0)),
[td0005_key_ag6] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag6] DEFAULT ((0)),

[td0005_key_ag7] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag7] DEFAULT ((0)),
[td0005_key_ag8] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag8] DEFAULT ((0)),
[td0005_key_ag9] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag9] DEFAULT ((0)),

� Note the primary key

� Level column set to “detail” and level1-9

� Dim_char_ky_fld set to character string key

� Various fields describing the date

� These fields can be created in Excel and loaded

� Notice 9 aggregate keys

The Multi Level Day Table
� Note the primary key is unique and sequential

� Level column set to “detail” and level1-8 + “Total”

� Levels are Day, Week, Months, Quarter, Year, Total

� Dim_char_ky_fld set to character string key

� Day date included to show the date

� Other fields removed from slide

� Notice aggregate keys for all higher levels on rows

� Detail rows have all levels keys above them set

SELECT TOP 1000 [pk_TD0005]

,[level_col]
,[dim_char_ky_fld]

,[day_date]

,[td0005_key_ag1]

,[td0005_key_ag2]

,[td0005_key_ag3]
,[td0005_key_ag8]

,[td0005_key_ag9]

FROM [EBIHS_C006_DWH].[dbo].[TD0005]

order by 1

PK level_col char_ky_fld day_date ag1 ag2 ag3 ag8 g9

2 total directive_total 1990-01-01 00:00:00.000 0 0 0 0 0

3 level8 1990 1990-01-01 00:00:00.000 0 0 0 0 2

4 level3 19901 1990-01-01 00:00:00.000 0 0 0 3 2
5 level2 19901 1990-01-01 00:00:00.000 0 0 4 3 2

6 level1 19901 1990-01-01 00:00:00.000 0 5 4 3 2

7 detail 1990-01-01 1990-01-01 00:00:00.000 6 5 4 3 2

8 detail 1990-01-02 1990-01-02 00:00:00.000 6 5 4 3 2

9 detail 1990-01-03 1990-01-03 00:00:00.000 6 5 4 3 2
10 detail 1990-01-04 1990-01-04 00:00:00.000 6 5 4 3 2

11 detail 1990-01-05 1990-01-05 00:00:00.000 6 5 4 3 2

12 detail 1990-01-06 1990-01-06 00:00:00.000 6 5 4 3 2

13 detail 1990-01-07 1990-01-07 00:00:00.000 6 5 4 3 2

14 level1 19902 1990-01-08 00:00:00.000 0 5 4 3 2
15 detail 1990-01-08 1990-01-08 00:00:00.000 14 5 4 3 2

The Day View
� MSTR sees vm_day as identical to a “table”

� Notice the “id” columns for higher level keys are

visible on the view so MSTR can use them in

hierarchies

� On the next slides we will show week, month,

quarter, year views

create view [dbo].[vm_day] as select

TD0005.pk_TD0005 pk_vm_day
,TD0005.day_date day_date

,TD0005.day_name day_name

...

,TD0005.level_col level_col

,TD0005.dim_char_ky_fld dim_char_ky_fld
,TD0005.td0005_key_ag1 dk_vm_week

,TD0005.td0005_key_ag2 dk_vm_month

,TD0005.td0005_key_ag3 dk_vm_quarter

,TD0005.td0005_key_ag8 dk_vm_year
,TD0005.td0005_key_ag9 dk_vm_time_total

from dbo.TD0005

where (TD0005.level_col = 'detail') or TD0005.pk_TD0005 = 0

PK day_date level_col char_ky week month quarter year total

7 1990-01-01 00:00:00.000 detail 1990-01-01 6 5 4 3 2

8 1990-01-02 00:00:00.000 detail 1990-01-02 6 5 4 3 2

9 1990-01-03 00:00:00.000 detail 1990-01-03 6 5 4 3 2

10 1990-01-04 00:00:00.000 detail 1990-01-04 6 5 4 3 2
11 1990-01-05 00:00:00.000 detail 1990-01-05 6 5 4 3 2

12 1990-01-06 00:00:00.000 detail 1990-01-06 6 5 4 3 2

13 1990-01-07 00:00:00.000 detail 1990-01-07 6 5 4 3 2

15 1990-01-08 00:00:00.000 detail 1990-01-08 14 5 4 3 2

16 1990-01-09 00:00:00.000 detail 1990-01-09 14 5 4 3 2

The Multi Level Day Table
PK week_begin_date dk_vm_month dk_vm_quarter dk_vm_year dk_vm_time_total

6 1990-01-01 00:00:00.000 5 4 3 2
14 1990-01-08 00:00:00.000 5 4 3 2

22 1990-01-15 00:00:00.000 5 4 3 2

30 1990-01-22 00:00:00.000 5 4 3 2

38 1990-01-29 00:00:00.000 5 4 3 2
47 1990-02-05 00:00:00.000 42 4 3 2

55 1990-02-12 00:00:00.000 42 4 3 2

63 1990-02-19 00:00:00.000 42 4 3 2

71 1990-02-26 00:00:00.000 42 4 3 2

Week

Month

PK first_day_of_month month_name dk_vm_quarter dk_vm_year dk_vm_time_total

5 1990-01-01 00:00:00.000 January 4 3 2

42 1990-02-01 00:00:00.000 February 4 3 2

75 1990-03-01 00:00:00.000 March 4 3 2
112 1990-04-01 00:00:00.000 April 111 3 2

148 1990-05-01 00:00:00.000 May 111 3 2

184 1990-06-01 00:00:00.000 June 111 3 2

Quarter

PK first_day_of_quarter dk_vm_year dk_vm_time_total

4 1990-01-01 00:00:00.000 3 2

111 1990-04-01 00:00:00.000 3 2
219 1990-07-01 00:00:00.000 3 2

328 1990-10-01 00:00:00.000 3 2

439 1991-01-01 00:00:00.000 438 2

Year

PK first_day_of_year year_name dk_vm_time_total
3 1990-01-01 00:00:00.000 1990 2

438 1991-01-01 00:00:00.000 1991 2

873 1992-01-01 00:00:00.000 1992 2

MSTR Date Hierarchy

The MSTR Date Hierarchy

� Notice the hierarchies set up just as normal

� They are all using views, not tables

The Multi Level Invoice Line Table

� So now we are ready to create multi-level facts

� These are accounts payable invoice lines, just for

example

� We have day, week, month, quarter and year

�vf_ap_invoice_line

�vf_ap_invoice_line_week

�vf_ap_invoice_line_month

�vf_ap_invoice_line_quarter

�vf_ap_invoice_line_year

� The day level is “detail” and has its own table

� The higher levels all cohabit the same table with a

summary number in the view…see over

The Multi Level Invoice Line Table

� View snippets are as follows…

create view [dbo].[vf_ap_invoice_line] as select

TF0101.pk_TF0101 pk_vf_ap_invoice_line

.....

from dbo.TF0101
where TF0101.table_number = 508

create view [dbo].[vf_ap_invoice_line_week] as select

...

from z01_vf_ap_invoice_line_01_summary

where pk_aggregate_number = 201

create view [dbo].[vf_ap_invoice_line_month]
as select

...

from z01_vf_ap_invoice_line_01_summary

where pk_aggregate_number = 202

create view [dbo].[vf_ap_invoice_line_quarter]
as select

...

from z01_vf_ap_invoice_line_01_summary

where pk_aggregate_number = 203

create view [dbo].[vf_ap_invoice_line_year]

as select
...

from z01_vf_ap_invoice_line_01_summary

where pk_aggregate_number = 204

� So now we will show you a short video that captures

the SQL from MSTR and shows you that the summary

levels are accessed properly

� We will also include the SQL on the following slides

� We just want to prove MSTR navigates the summaries

perfectly!

Video Demonstration

The Multi Level Invoice Line Table

� SQL snippets are as follows…

select a11.dk_vm_invoice_date pk_vm_day,

max(CONVERT(DATETIME,

CONVERT(VARCHAR(10), a12.day_date, 101))) day_date,

sum(a11.amount_col) WJXBFS1
from vf_ap_invoice_line a11

join vm_day a12

on (a11.dk_vm_invoice_date = a12.pk_vm_day)

group by a11.dk_vm_invoice_date

Day

select a11.dk_vm_invoice_week pk_vm_week,

max(a12.week_in_year) week_in_year,

sum(a11.amount_col) WJXBFS1

from vf_ap_invoice_line_week a11

join vm_week a12
on (a11.dk_vm_invoice_week =

a12.pk_vm_week)

group by a11.dk_vm_invoice_week

Week

Month
Quarter

Year

select a11.dk_vm_invoice_month pk_vm_month,

max(a12.month_name_sdesc) month_name_sdesc,

sum(a11.amount_col) WJXBFS1
from vf_ap_invoice_line_month a11

join vm_month a12

on (a11.dk_vm_invoice_month =

a12.pk_vm_month)

group by a11.dk_vm_invoice_month

select a11.dk_vm_invoice_quarter pk_vm_quarter,

max(a12.calendar_qtr) calendar_qtr,

sum(a11.amount_col) WJXBFS1
from vf_ap_invoice_line_quarter a11

join vm_quarter a12

on (a11.dk_vm_invoice_quarter =

a12.pk_vm_quarter)

group by a11.dk_vm_invoice_quarter

select a11.dk_vm_invoice_year pk_vm_year,

max(a12.year_num) year_num,

sum(a11.amount_col) WJXBFS1
from vf_ap_invoice_line_year a11

join vm_year a12

on (a11.dk_vm_invoice_year = a12.pk_vm_year)

group by a11.dk_vm_invoice_year

� Notice how the from and join clauses change to

get data from the correct level of the day table

and correct level of the ap invoice line fact

tables.

� MSTR navigates summaries perfectly

� EBI Builds summaries perfectly

A Parting Word

� Multi Level Summaries are the #1 tool to create

fast queries inside the database

� Using separate tables requires separate ETL

� With our Big Data Accelerator product we can

create multi-level summaries simply and easily

� We use special multi-level aware ETL to populate

the multi-level summaries with no extra work

� We look forward to helping you create your

summaries faster, more easily and, most

importantly, less expensively

Summary

�What is multi-level data (MLD)?

�Why is MLD important?

�How is MLD best implemented?

�How do you create a schema to navigate it?

�Fully worked example

�A parting word

� Summary

Thank You for Your Time!

