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Introduction 

� What is multi-level data (MLD)?

� Why is MLD important?

� How is MLD best implemented?

� How do you create a schema to navigate it?

� Fully worked example

� A parting word

� Summary



What is Multi-Level Data?

� The vast majority of queries use summary data

� Microstrategy has implemented Intelligent Cubes 

to support this behaviour

� Microstrategy has implemented multi-level 

lookup tables for many years



What is Multi-Level Data?

� You can see them in the tutorial database…

� These are example summary level fact tables

� The following diagrams show you simple diagrams 

of how these things evolved



Evolution of BI Models

� Pre 1995 no companies mixed 3NF and Dimensional

�Companies did one or the other…not both

� In late 1995 two pioneers ‘tried out’ mixing the two 

modeling techniques in one design. It worked well.

� Since 1996 these two pioneers recommended to clients 

the most complete solution was a combination of both

� It is also the most expensive approach

�Not everyone would buy into this approach

� Diagram on next page shows ‘Best Practice Since 1996’…
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5-10 years

Highly

Summarised

(in star schemas

or cubes)

Virtual Lightly

Summarised

(star schemas)

Current

Detail in 

archival data

store 

(star schema)

Older detail (star schema)

3-5 years

Views

for

Department 3-5 years

Business Users Desktops

Structured for Enterprise

Do not have to 

build data marts

integration/
transformation

Operational Systems
(System of Record)

Meta Data 

Everywhere

star 
schema

ODS



Why Is MLD Important?

� #1 reason is speed of query

� If you summarise 1000x the query will be 1000x 

faster…approximately

� Summarisation is the #1 tool for fast queries

� Everyone does it no matter some deny it

� Particularly necessary for dashboards and 

interactive query processing such as drill down

� MSTR has done this for many years



How Is MLD Best Implemented?

� Ralph Kimball of “Star Schema” fame did it best

� These skills were “lost” in the 90s

� It is done by using a single underlying table with 

a “Level” column and views places over the top

� Having one table per summary costs a lot of 

maintenance time for ETL programmers

� 100% replicates Microstrategy recommendations

� So lets look at an example

� Our friend the day table…



The Multi Level Day Table
CREATE TABLE [dbo].[TD0005](
[pk_TD0005] [int] NOT NULL DEFAULT ((0)),

[level_col] [varchar](10) NOT NULL DEFAULT ('unknown'),
[dim_char_ky_fld] [varchar](255) NOT NULL DEFAULT ('unknown'),
[day_date] [datetime] NULL,
[day_name] [varchar](9) NULL,
[day_name_sdesc] [varchar](3) NULL,

[day_in_week] [int] NULL,
[day_in_month] [int] NULL,
[day_in_year] [int] NULL,
[week_in_month] [int] NULL,

[week_in_year] [int] NULL,
[month_name] [varchar](15) NULL,
[month_name_sdesc] [varchar](3) NULL,
[month_in_year] [int] NULL,
[calendar_qtr] [int] NULL,

[calendar_qtr_str] [varchar](1) NULL,
[month_in_qtr] [int] NULL,
[week_in_qtr] [int] NULL,
[day_in_qtr] [int] NULL,
[financial_qtr] [int] NULL,

[financial_qtr_str] [varchar](1) NULL,
[financial_year] [int] NULL,
[financial_year_name] [varchar](255) NULL,
[month_in_fncl_qtr] [int] NULL,
[week_in_fncl_qtr] [int] NULL,

[day_in_fncl_qtr] [int] NULL,
[year_name] [varchar](4) NULL,
[year_num] [int] NULL,
[season_name] [varchar](15) NULL,
[season_name_sdesc] [varchar](3) NULL,

[num_days_since_1970] [int] NULL,
[num_weeks_since_1970] [int] NULL,
[num_months_since_1970] [int] NULL,
[hldy_ind] [varchar](1) NULL,

[xmas_hldy_ind] [varchar](1) NULL,
[easter_hldy_ind] [varchar](1) NULL,
[last_day_in_month_flag] [varchar](1) NULL,
[same_weekday_year_ago] [datetime] NULL,
[week_begin_date] [datetime] NULL,

[report_period_01_flag] [varchar](1) NOT NULL DEFAULT ('N'),
[report_period_02_flag] [varchar](1) NOT NULL DEFAULT ('N'),
[report_period_03_flag] [varchar](1) NOT NULL DEFAULT ('N'),
[report_period_04_flag] [varchar](1) NOT NULL DEFAULT ('N'),
[report_period_05_flag] [varchar](1) NOT NULL DEFAULT ('N'),

[week_day_ind] [char](1) NULL DEFAULT ('N'),
[year_month_num] [int] NULL DEFAULT ((0))

[td0005_key_ag1] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag1]  DEFAULT ((0)),

[td0005_key_ag2] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag2]  DEFAULT ((0)),
[td0005_key_ag3] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag3]  DEFAULT ((0)),
[td0005_key_ag4] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag4]  DEFAULT ((0)),
[td0005_key_ag5] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag5]  DEFAULT ((0)),
[td0005_key_ag6] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag6]  DEFAULT ((0)),

[td0005_key_ag7] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag7]  DEFAULT ((0)),
[td0005_key_ag8] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag8]  DEFAULT ((0)),
[td0005_key_ag9] [int] NOT NULL CONSTRAINT [DF_TD0005_td0005_ag9]  DEFAULT ((0)),

� Note the primary key

� Level column set to “detail” and level1-9

� Dim_char_ky_fld set to character string key

� Various fields describing the date

� These fields can be created in Excel and loaded

� Notice 9 aggregate keys



The Multi Level Day Table
� Note the primary key is unique and sequential

� Level column set to “detail” and level1-8 + “Total”

� Levels are Day, Week, Months, Quarter, Year, Total

� Dim_char_ky_fld set to character string key

� Day date included to show the date

� Other fields removed from slide

� Notice aggregate keys for all higher levels on rows

� Detail rows have all levels keys above them set

SELECT TOP 1000 [pk_TD0005]

,[level_col]
,[dim_char_ky_fld]

,[day_date]

,[td0005_key_ag1]

,[td0005_key_ag2]

,[td0005_key_ag3]
,[td0005_key_ag8]

,[td0005_key_ag9]

FROM [EBIHS_C006_DWH].[dbo].[TD0005]

order by 1

PK level_col char_ky_fld day_date ag1 ag2 ag3 ag8 g9

2 total directive_total 1990-01-01 00:00:00.000 0 0 0 0 0

3 level8 1990 1990-01-01 00:00:00.000 0 0 0 0 2

4 level3 19901 1990-01-01 00:00:00.000 0 0 0 3 2
5 level2 19901 1990-01-01 00:00:00.000 0 0 4 3 2

6 level1 19901 1990-01-01 00:00:00.000 0 5 4 3 2

7 detail 1990-01-01 1990-01-01 00:00:00.000 6 5 4 3 2

8 detail 1990-01-02 1990-01-02 00:00:00.000 6 5 4 3 2

9 detail 1990-01-03 1990-01-03 00:00:00.000 6 5 4 3 2
10 detail 1990-01-04 1990-01-04 00:00:00.000 6 5 4 3 2

11 detail 1990-01-05 1990-01-05 00:00:00.000 6 5 4 3 2

12 detail 1990-01-06 1990-01-06 00:00:00.000 6 5 4 3 2

13 detail 1990-01-07 1990-01-07 00:00:00.000 6 5 4 3 2

14 level1 19902 1990-01-08 00:00:00.000 0 5 4 3 2
15 detail 1990-01-08 1990-01-08 00:00:00.000 14 5 4 3 2



The Day View
� MSTR sees vm_day as identical to a “table”

� Notice the “id” columns for higher level keys are 

visible on the view so MSTR can use them in 

hierarchies

� On the next slides we will show week, month, 

quarter, year views

create view [dbo].[vm_day] as select 

TD0005.pk_TD0005               pk_vm_day
,TD0005.day_date                  day_date

,TD0005.day_name                 day_name

...

,TD0005.level_col                     level_col

,TD0005.dim_char_ky_fld         dim_char_ky_fld
,TD0005.td0005_key_ag1         dk_vm_week

,TD0005.td0005_key_ag2         dk_vm_month

,TD0005.td0005_key_ag3         dk_vm_quarter

,TD0005.td0005_key_ag8         dk_vm_year
,TD0005.td0005_key_ag9         dk_vm_time_total

from dbo.TD0005

where ( TD0005.level_col  = 'detail' ) or  TD0005.pk_TD0005 = 0

PK day_date level_col char_ky week month quarter year total

7 1990-01-01 00:00:00.000 detail 1990-01-01 6 5 4 3 2

8 1990-01-02 00:00:00.000 detail 1990-01-02 6 5 4 3 2

9 1990-01-03 00:00:00.000 detail 1990-01-03 6 5 4 3 2

10 1990-01-04 00:00:00.000 detail 1990-01-04 6 5 4 3 2
11 1990-01-05 00:00:00.000 detail 1990-01-05 6 5 4 3 2

12 1990-01-06 00:00:00.000 detail 1990-01-06 6 5 4 3 2

13 1990-01-07 00:00:00.000 detail 1990-01-07 6 5 4 3 2

15 1990-01-08 00:00:00.000 detail 1990-01-08 14 5 4 3 2

16 1990-01-09 00:00:00.000 detail 1990-01-09 14 5 4 3 2



The Multi Level Day Table
PK week_begin_date dk_vm_month dk_vm_quarter dk_vm_year dk_vm_time_total

6 1990-01-01 00:00:00.000 5 4 3 2
14 1990-01-08 00:00:00.000 5 4 3 2

22 1990-01-15 00:00:00.000 5 4 3 2

30 1990-01-22 00:00:00.000 5 4 3 2

38 1990-01-29 00:00:00.000 5 4 3 2
47 1990-02-05 00:00:00.000 42 4 3 2

55 1990-02-12 00:00:00.000 42 4 3 2

63 1990-02-19 00:00:00.000 42 4 3 2

71 1990-02-26 00:00:00.000 42 4 3 2

Week

Month

PK first_day_of_month month_name dk_vm_quarter dk_vm_year dk_vm_time_total

5 1990-01-01 00:00:00.000 January 4 3 2

42 1990-02-01 00:00:00.000 February 4 3 2

75 1990-03-01 00:00:00.000 March 4 3 2
112 1990-04-01 00:00:00.000 April 111 3 2

148 1990-05-01 00:00:00.000 May 111 3 2

184 1990-06-01 00:00:00.000 June 111 3 2

Quarter

PK first_day_of_quarter dk_vm_year dk_vm_time_total

4 1990-01-01 00:00:00.000 3 2

111 1990-04-01 00:00:00.000 3 2
219 1990-07-01 00:00:00.000 3 2

328 1990-10-01 00:00:00.000 3 2

439 1991-01-01 00:00:00.000 438 2

Year

PK first_day_of_year year_name dk_vm_time_total
3 1990-01-01 00:00:00.000 1990 2

438 1991-01-01 00:00:00.000 1991 2

873 1992-01-01 00:00:00.000 1992 2



MSTR Date Hierarchy



The MSTR Date Hierarchy

� Notice the hierarchies set up just as normal

� They are all using views, not tables



The Multi Level Invoice Line Table

� So now we are ready to create multi-level facts

� These are accounts payable invoice lines, just for 

example

� We have day, week, month, quarter and year

�vf_ap_invoice_line

�vf_ap_invoice_line_week

�vf_ap_invoice_line_month

�vf_ap_invoice_line_quarter

�vf_ap_invoice_line_year

� The day level is “detail” and has its own table

� The higher levels all cohabit the same table with a 

summary number in the view…see over



The Multi Level Invoice Line Table

� View snippets are as follows…

create view [dbo].[vf_ap_invoice_line] as select 

TF0101.pk_TF0101  pk_vf_ap_invoice_line

.....

from dbo.TF0101
where TF0101.table_number = 508

create view [dbo].[vf_ap_invoice_line_week] as select

...

from z01_vf_ap_invoice_line_01_summary 

where pk_aggregate_number = 201

create view [dbo].[vf_ap_invoice_line_month] 
as select

...

from z01_vf_ap_invoice_line_01_summary 

where pk_aggregate_number = 202

create view [dbo].[vf_ap_invoice_line_quarter] 
as select

...

from z01_vf_ap_invoice_line_01_summary 

where pk_aggregate_number = 203

create view [dbo].[vf_ap_invoice_line_year]

as select
...

from z01_vf_ap_invoice_line_01_summary 

where  pk_aggregate_number = 204

� So now we will show you a short video that captures 

the SQL from MSTR and shows you that the summary 

levels are accessed properly

� We will also include the SQL on the following slides

� We just want to prove MSTR navigates the summaries 

perfectly!



Video Demonstration



The Multi Level Invoice Line Table

� SQL snippets are as follows…

select a11.dk_vm_invoice_date  pk_vm_day,

max(CONVERT(DATETIME, 

CONVERT(VARCHAR(10), a12.day_date, 101)))  day_date,

sum(a11.amount_col)  WJXBFS1
from vf_ap_invoice_line a11

join vm_day a12

on (a11.dk_vm_invoice_date = a12.pk_vm_day)

group by a11.dk_vm_invoice_date

Day

select a11.dk_vm_invoice_week  pk_vm_week,

max(a12.week_in_year)  week_in_year,

sum(a11.amount_col)  WJXBFS1

from vf_ap_invoice_line_week a11

join vm_week a12
on (a11.dk_vm_invoice_week = 

a12.pk_vm_week)

group by a11.dk_vm_invoice_week

Week

Month
Quarter

Year

select a11.dk_vm_invoice_month  pk_vm_month,

max(a12.month_name_sdesc)  month_name_sdesc,

sum(a11.amount_col)  WJXBFS1
from vf_ap_invoice_line_month a11

join vm_month a12

on (a11.dk_vm_invoice_month = 

a12.pk_vm_month)

group by a11.dk_vm_invoice_month

select a11.dk_vm_invoice_quarter  pk_vm_quarter,

max(a12.calendar_qtr)  calendar_qtr,

sum(a11.amount_col)  WJXBFS1
from vf_ap_invoice_line_quarter a11

join vm_quarter a12

on (a11.dk_vm_invoice_quarter = 

a12.pk_vm_quarter)

group by a11.dk_vm_invoice_quarter

select a11.dk_vm_invoice_year  pk_vm_year,

max(a12.year_num)  year_num,

sum(a11.amount_col)  WJXBFS1
from vf_ap_invoice_line_year a11

join vm_year a12

on (a11.dk_vm_invoice_year = a12.pk_vm_year)

group by a11.dk_vm_invoice_year

� Notice how the from and join clauses change to 

get data from the correct level of the day table 

and correct level of the ap invoice line fact 

tables.

� MSTR navigates summaries perfectly

� EBI Builds summaries perfectly



A Parting Word

� Multi Level Summaries are the #1 tool to create 

fast queries inside the database

� Using separate tables requires separate ETL

� With our Big Data Accelerator product we can 

create multi-level summaries simply and easily

� We use special multi-level aware ETL to populate 

the multi-level summaries with no extra work

� We look forward to helping you create your 

summaries faster, more easily and, most 

importantly, less expensively



Summary

�What is multi-level data (MLD)?

�Why is MLD important?

�How is MLD best implemented?

�How do you create a schema to navigate it? 

�Fully worked example

�A parting word

� Summary



Thank You for Your Time!


